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The disinte~ation of an arbitrary discontinuity of electromagnetic parameters 
in n~conduc~ng. ferroma~etics is considered. Cases in which the dependence 

between magnetic permeability of the medium and the mod@rs of the exter- 
nal magnetic field intensity is linear( conforms to the Rayleigh law) and inver- 

sely proportional( satifies the Friihlich-Kennelly formula) are investigated, 

The problem of disintegration of an arbitrary discontinuity for a perfect gas was 

solved in El], for media with an arbitrary equation of state and for combustible mixtures 

it was solved in [2] and [3], respectively, and in magnetohydrodynamics it was solved 

in [4]. 
I.. Let the parameters of the electromagnetic field in a ferromagnetic be discont- 

inuous in the plane z = 0 at the initial instant of time, and let the arbitrary discon- 

tinuity disintegrate at subsequent instants of time. Owing to the self-similarity of the 

problem, the discontinuity disintegrates into some combination of strong discontinuities 
and two types of electromagnetic waves [5]. Below, by analo y to magnetohydrodyna- 
mics, the light waves A propagating at the speed VA = c / -r/B PCLe (/J. is the magnetic 

permeability and 8 is the permittivity of the ferromagnetic) will be called Alfven waves 

or rotational discontinuities. 
We shall first consider the d~~tegration of discontinuity in the case in which p 

is the reciprocal of the external magnetic field intensity H (1 / f~ = u -t bfl). The 
propagation velocities of single waves, strong discontinuities, and Alfven waves will 
be shown below to be such that two waves originating at the contact discontinuity K 
can propagate in opposite directions with the rotational discontinuity A following either 
the single wave R or the strong discontinuity 8 (Fig. 1). 

Fig. 1 

Parameters of the medium to the left of the contact discontinuity plane are denoted 
below by a prime, whole those at the initial instant of time are denoted by subscript 
0. . Parameters of the medium behind the first wave propagating to the right or left 

bear subscript 1 ,and those of the medium behind discontinuity A bear subscript 2. 
Let us investigate the relation between parameters in waves and at discontinuiti~ 

in ferromagnetics when the magnetic permeability is inversely proportional to the 
modulus of the magnetic field intensity. It was shown in [S’J that, if the normal comp- 
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onents of the magnetic field at the discontinuity are initially unequal, a jump H, 
occurs at the contact discontinuity and then the equality [@$,,I = 0 is satisfied. The 
propagation velocity of the contact discontinuity is zero, hence it lies at all times in 
the plane J: = 0, Since the pecmittivity of the ferromagnetic E is assumed here 
constant, heace the electric field normal component which satisfies the known relation- 

ships based on Maxwell equations cannot have discontinuities, and in that case the equ- 

ality [E,] = 0 is satisfied at all discontinuities and in waves. 

Conditions at strong discontinuities ace of the form 

(1.1) 

where v,, is the propagation velocity of the discontinuity, and the plus and minus signs 
correspond to waves that propagate, respectively, to the right and left. 

The condition of evolution implies that the passage of a strong discontinuity inccea- 
ses the magnetic field intensity ~61. 

For a single wave the relationship between the electric and magnetic fields is of 
the form 

E, = &, - f (R; R,), E, = J&, + cp (R; R,) (1.2) 

where h is the propagation velocity of single waves. It was shown in [6] that the der- 

ivative dh / dH > 0, hence waves in which the magnetic field increases break, 

in fact, only waves is which the magnetic field decreases are realized. 

A rotational discontinuity lags behind single and shock waves, since its propagation 
velocity is lower than that of the R-and S-waves. Such discontinuity turns vector R 

by some angle without affecting the magnitude of its modulus, with the relation betw- 

een vectors H and E defined by formula [E) = +vG [n X [III1 , where n 
- is a vector normal to the discontinuity plane. 

The case of plane discontinuity. Letus, first, considerthe 
plane problem of disintegration of an arbitrary discontinuity, in which vectors H, 

1 ED Ho’ 1 E,’ and He II Ho’. If we select the coordinate system so that vector 

Ha, is directed along the y -axis, vectors E,, and EOz’ will be directed along 

the z -axis. From the point with coordinates Holr and E,,, (Fig. 2) we draw curves 
that correspond to oncoming and outgoing R. and S- waves whose equations ace 

of the form 

KR: EZ --= Eoz - f (H,; H,,), EZ>Eoz (1.3) 
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KS: E, = Eat - -& (N, - fJoy)r E, < Eoz 

RK: E, = E,, + r;&; :lo:,), E, > Eoz 

SK:,!&= E,,+& (~1~ - Ho?,), Ez < Eoz 

Fig. 2 
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The plane H,E, is divided near point 0 in four subregions in which one of the 

following four combinations of waves are possible: SKS, SKR, RKS and RKR. 

when point (Hog’, EoZ’) lies above line RKR issu$ng from the point of curve 
KR at H = O,, we have two Alfven discontinuities. When point Hay’, Eo,’ 
lies on curve RKR,we have a combination of two single waves behind which the mag- 
netic field dwindles to zero. The equation of the RKR -curve is of the form 

Eo, = -f (0; Ho,) = E, + f (0; Hr,) (1.4) 

Let us consider point Or with coordinates H = Ho and EAT = Eo, -I- @lo 

1/n which corresponds to the disintegration of the arbitrary discontinuity in two 
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d -discontinuities. From that point we draw curves AKAR, RAKA, AKAS+ 
and 6% KA. The equations of lines RAKA and SA KA are similar to ~qs. (1.3) 
for RR and SK, if we substitute in these J%‘A~ for Eo, + The equations of lines 
AKA& and A KAS are of the form 

E,=E,,-f(H,Ho,)+4H~~, O<H,<Jfopr 
E, = Eoz - -&Vi, - Ho?/) + 4WtZIE9 H, > Hot, 

The whole right-hand half-plane H, > 0 is thus divided in eight regions in 
each of which we have indicated the combination of waves that propagates there at the 
d~integration of the arbitrary d~cont~uity, 

If HOy‘ < 0, one Alfven discontinuity which turns the magnetic field by 180” 
must necessarily appear at disintegration, except when the magnetic field dwindles to 

zero along line RKR which may be continued beyond the axis Ii!, = 0. To the right 
and left of that line Alfven discontinuities are generated which propagate to the left 

and right, respectively. bet us consider points 0, and O3 which correspond to the 
passage of a single A -discontinuity, The coordinates of these points are, respectivley 

H = ---Ho; E, = E,, - 2Ho I/n and H = -Hn, E, =. Eoz + 
2Hop5.kl If3 l 

The equations of lines AK,!?, RAK, SAK, AKR and KAS, 
and RKA, SKA, and KAR that issue from points 0, and 0, can be written by 

analogy to the equations that define disintegrations A KA R, AKA S, SA KA and 
RAKA, substituting the coordinates Of point 0, or 0s for the coordinates of point 
Or and intensity - H for H, and taking into account that only one Alfven discontinuity 

takes place. 
The left-hand half-plane is thus divided in a number of regions each of which co- 

rresponds to a combination of waves consisting of a single A -discontinuity and two 
or one wave, 

The three dimensional disintegration. betvectors Hot, He,’ 
and &, &’ be nonparallel. TUrUing the coordinate system so that Ho, = 0, we 
construct the solution in the plane EYE,. Then in that plane certain curves corres- 

pond to the combination of two Alfven waves and one single or shock wave, while the 
regions comprised between these discontinuities correspond to the combination of two 

discontinuiti~ and two waves. 

The equation of curve A KAR is of the form 

El, = EW El, = &z - f (H,HcJ (1.5) 

J%v - El, = v-G&, J&z - El, = - V’G (Hay - Hr,) 

E oy’ - Ezlr = - l4G.F Wo,’ - Hdr 

Eoz - Ez, = V’G (Ho; - H2d 

] Hz1 = IHol, HI, = Ho,,I~o’I/IffoI 

For Boll and Ho,, f specified behind the disc~t~uity we have a system of eight 

equations for the determination of nine quantities HIV, Hzy, HZ,, &yt Etz, EQ, 
J%, EOy’, and Eoz’. 

The relationship of EoV’ and E,, ’ that corresponds to the disintegra~on of dis- 
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continuity to the AKAR combination can be expressed by the formula of the form 

(1.6) 

H 
& + , =4+ H; 

which represents a circle of radius 2 VP1 / e \ ~~~ 1 whose center is at point 

E, = Eel/ + JfF Ho,‘, E, = Eoz + I/F x 

( Hou’ + Ho, I Ho’ I 
I Hil I 1 

It can be shown that the AKAS line in the plane EVE, is a&o a circle. 

when 1 HOPI>]& \ we have in the plane EvEz two circles that correspond to 
the disintegration of discontinuity in a combination of AKAS and RAKA waves. 
Circle &I KAlies inside circleA KA S( Fig. 3, a), because in the plane case of disinte- 
gration of the arbitrary discontinuity the straight line Eu = 0) running from infinity, 

first, intersects the region to which corresponds combination SAKAS and, then curve 

AKAS and continues in region RAKAS. If HA, = 0, the AKAScircle is sym- 
metric about the axis Eu = Eov; points E,, and Ezz of intersection of circle 

AKAS with the E, -axis can be found in Fig. 2 for the plane disintegration of dis- 

1 
Et 

UKRS SaKaS 

a 

SAKRS 

b 

Fig. 3 

EZ SAXAS 

RKa 

continuity. These points correspond to the disintegration in a combination of KS 
and AKAS. By rotating these points about the middle of the segment that joins 

them, we can obtain the sought circle AKAS. Introduction of Hi, results in the 
shift of the circle along the 

-, 

to 2 I+I HoI. 

E, -axis by vpr / &Hoz and in the increase of its radius 

when I 6% I< I Ho, I we have in region E,E, also two circles, viz. SAKA 
and AKA R (the latter lying inside the first, Fig. 3. b), and when I HOT 1 = I ‘6~1 
the disintegration is only into the combinations SAKAS, RAKAS and AKA 
(Fig. 3, c). 

When field parameters are known on both sides of the discontinuity plane, then 
by constructing the curves defined by equations of the type (1.5), we obtain in the 
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plane J?,J?, circles that are similar to those shown in Fig. 3. when the coordinates 
of point (H,& Hi,) and (Ei, E;,) are known, it is possible to determine the combin- 
ation of waves that propagate for given parameter values. 

2. Let us consider the disintegration of the magnetic field when the dependence 
of p on H (P = l.ro i- l%H) is linear. In that case the propagation velocity of 

single waves and strong dis~ontinuities is lower than that of Alfven waves. A qualita- 
tive picture of the disintegration of arbitrary discontinutity of the magnetic field when 

the dependence of magnetic permeability on the magnetic field is linear is shown in 
Fig. 4. It was shown in [6] that in this case the normal component of the magnetic 
field H,,, does not break at the contact discontinuity. The contact discontinuity virtu- 
ally means only the plane II: = 0. 

Fig. 4 

The conditions at a strong discontinuity are of the same form as in the case of 

inverse dependence of p on H (formula (1.1)). strong discontinuities propagate at 
the velocitv 

The condition of evolution implies that in a strong discontinuity the magnetic 
field decreases. 

The relation between the electric and magnetic fields in single waves is of the 
same form as in formu~s (1.2}, and the propagation velocity of these waves is 

Since the derivative dh / dH <, 0, hence waves in which the magnetic field 

decreases break and are converted to strong discon~nuiti~. Only those single waves 

in which the magnetic field increase can exist. 
When the dependence of ~1 on H is linear the rotational discontinuity is exactly 

the same as the one considered in sect& 1. In such discontinuity the modulus of 
vector H remains unchanged, hence the magnetic permeability and the propagation 

velocity of discontinuity are also constant. 

The plane case of disintegration. when~efi~ldparamete~ 
behind and ahead the discontinuity are related by expressions H, -L Eo> Ho’ _L E,’ 
and Ho I( Ho’ the pattern of disintegration of an arbitrary discontinuity corresponds 
to that shown in Fig. 2. The problem of disintegration is solved similarly to that con- 
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sidered in Sectn. 1. The equations of lines KR, KS, RK and SK are of the 
form (1.3) in which the inequalities are reversed. The equation of line SKS is 
defined by formula 

Ear = -.&-Hov=Ez+-&-H~ 
n n 

The equations of all remaining lines which correspond to the disintegration of a 
plane discontinuity in Alfven discontinuities and a single or shock wave are the same 
as in Sects. 1, if the relationships for the R- and S-waves are substituted one for 

the other. It is necessary to take in that case into account that the Alfven wave over- 

takes the single wave and the strong discontinuity. 

The three-dimensional case, when behind and ahead of a dis- 
continuity vectors H, and & are not parallel, the disintegration of such discontinui- 
ty is accompanied by the generation of rotational discontinuities that induce transverse 

components of the magnetic field. The equations that define the relation of components 

Ev and E, in wave combinations consisting of two Alfven waves and one R- or 

&L wave coincide with formula (1.6). The plane l&E, is divided by circles 
AKRA, AKSA, ASKA and ARKA in regions in which combinations of waves 

ARKRA, ARKSA, ASKRA and ASKSA are realized. 

By substituting in Fig. 3 the symbols S ‘for R and R for S we obtain the pattern 
of three-dimensional disintegration when the dependence of on 11 is linear and / E?,,i 

;I 1 HOT’ 1 (a), and 1 HOT I < ( EN 1 (b) and IHo,\ =IHor’j (c). 

The author thanks A. G. Kulikovskii and v. v. Gogosov for the discussion of this 
problem . 
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